Monatshefte für Chemie 110, 799-804 (1979)

Monatshefte für Chemie

© by Springer-Verlag 1979

Stabilitäten von As(V) in Chlorokomplexen

A. Feza Demiray und Wolfgang Brockner*

Anorganisch-Chemisches Institut, Technische Universität Clausthal, D-3392 Clausthal-Zellerfeld, Bundesrepublik Deutschland

(Eingegangen 7. Dezember 1978. Angenommen 20. Dezember 1978)

Stability of As(V) in Chlorocompounds

The temperature dependent behaviour of PCl_4AsCl_6 , PCl_4SbCl_6 and $AsCl_4SbCl_6$ has been investigated by *Raman* spectroscopy. The As(V) containing complexes decompose into homogeneous molecular melts consisting of AsCl₃, Cl₂ and PCl₅, respectively. In $PCl_4SbCl_6 PCl_4^+$ and $SbCl_6^-$ complex ions were found in the solid as well as in the molten state.

(Keywords: AsCl₄SbCl₆; Melt; PCl₄AsCl₆; PCl₄SbCl₆; Raman spectra)

Einleitung

Die Strukturen der Pentahalogenide der Elemente der 5. Hauptgruppe fallen durch ihre Mannigfaltigkeit auf¹. Phosphorpentachlorid, im kristallinen Zustand aus PCl_4^+ - und PCl_6^- -Ionen aufgebaut², besteht im geschmolzenen Zustand aus trigonal-bipyramidalen PCl_5^- Molekülen³. Im nur bei tiefen Temperaturen stabilen Arsenpentachlorid^{4,5} liegen kovalente AsCl₅-Baueinheiten vor. Beim Antimonpentachlorid findet bei tiefen Temperaturen eine Kristallstrukturumwandlung statt, bei der aus monomeren SbCl₅- dimere Sb₂Cl₁₀-Struktureinheiten gebildet werden⁶⁻¹¹. Wismutpentachlorid konnte bislang noch nicht dargestellt werden. Polymere Strukturen liegen bei den Pentachloriden der Elemente der 5. Hauptgruppe nicht vor.

Auf Grund der unterschiedlichen Lewis-Säure-Stärke von Phosphor-, Arsen- und Antimonpentachlorid¹² lassen sich die Verbindungen PCl₄AsCl₆, PCl₄SbCl₆ und AsCl₄SbCl₆ darstellen. Das thermische Verhalten und der strukturelle Aufbau der Schmelzen der genannten Verbindungen sind von Interesse.

⁵² Monatshefte für Chemie, Vol. 110/4

Experimentelles

Die Darstellung von PCl_4AsCl_6 und $AsCl_4SbCl_6$ erfolgte aus einer $AsCl_3$ — PCl_5 -Aufschlämmung bzw. $AsCl_3$ — $SbCl_5$ -Lösung und Einleiten von Chlor, wobei sich die genannten Verbindungen als gelbe kristalline Niederschläge bildeten. PCl_4SbCl_6 wurde durch Zusammengeben von Phosphor- und Antimonpentachlorid (1:1-Stöchiometrie) als blaßgelbes kristallines Produkt erhalten. Auch andere PCl_5 :SbCl_5-Stöchiometrien wurden untersucht. Die verwendeten Chemikalien hatten p. A.-Qualität. Alle Umsetzungen und Operationen wurden unter Luft- und Feuchtigkeitsausschluß durchgeführt, da die Produkte stark hygroskopisch waren. Eine PCl_4AsCl_6 -Probe, die etwas PCl_5 im Überschuß enthielt, wandelte sich nach etwa 1 Monat in rubinrote Kristalle um. Eine Erklärung dieses Phänomens kann nicht gegeben werden.

Die erhaltenen Verbindungen wurden unter Luft- und Feuchtigkeitsausschluß in dickwandige, einseitig geschlossene Duranküvetten ($d_a = 7 \text{ mm}$, $d_i = 2 \text{ mm}$, planes Endstück) übergeführt und danach unter Kühlung mit flüss. N₂ vorsichtig abgeschmolzen.

Die Ramanspektren wurden mit einem Coderg-PH 1-Ramanspektrographen und Rubinpulslaseranregung (6943Å) aufgenommen. Die Beobachtung des Streulichtes erfolgte senkrecht zur Einstrahlrichtung. Der Aufbau des Spektrographen und der verwendeten Probenanordnung sind bereits an anderer Stelle veröffentlicht^{13, 14}.

Ergebnisse

In Tab. 1 sind die Ramanfrequenzen des kristallinen und geschmolzenen PCl_4AsCl_6 und $AsCl_4SbCl_6$ zusammen mit den Literaturwerten für $AsCl_5$, $AsCl_3$, Cl_2 , PCl_5 und $SbCl_5$ aufgeführt. Die jeweiligen Intensitäten, Polarisationsverhältnisse und Zuordnungen wurden mit in Tab. 1 aufgenommen. Tab. 2 enthält die Ramanfrequenzen des PCl_4SbCl_6 im festen und geschmolzenen Zustand.

Diskussion

Im kristallinen Zustand sind die Verbindungen PCl_4AsCl_6 , As Cl_4SbCl_6 und PCl_4SbCl_6 aus Komplexionen aufgebaut¹⁷⁻¹⁹. Beim Erhitzen schmilzt PCl_4AsCl_6 bei etwa 110—120 °C zu einer orangegelben homogenen Flüssigkeit, die nach unseren *Raman*spektren aus PCl_5 -, As Cl_3 - und Cl_2 -Molekülen besteht. Gelöstes As Cl_5 konnte nicht aufgefunden werden. Während des Erkaltens wird die Verbindung PCl_4AsCl_6 größtenteils zurückgebildet.

Ähnliches Verhalten zeigt $AsCl_4SbCl_6$, das bei etwa 90 °C eine hellgelbe homogene Flüssigkeit bildet, die aus $SbCl_5$, $AsCl_3$ und Cl_2 aufgebaut ist (Tab. 1). Auch in diesem System ist $AsCl_5$ nicht vorhanden. Abkühlung bewirkt die Rückbildung von $AsCl_4SbCl_6$.

Die Verbindung PCl₄SbCl₆ schmilzt dagegen bei relativ hohen Temperaturen (etwa 480 °C) und, wie unsere *Raman*spektren zeigen, bleiben die ionischen Bausteine des Feststoffes in der Schmelze erhal-

$\operatorname{AsCl}_5^4, 5$	AsCl ₅ · Pt s, ZT	Cl ₅ · 1, 150 °C	$AsCl_3^{15}$	Cl ₂ 16 1	PCl ₅ ³ 1, 170 °C	$\underset{s, \ ZT^{17}}{\operatorname{AsCl}_5} \cdot \operatorname{Sb}($] ₅ 1, 100 °C	SbCl ₅ ⁹ 1, ZT
	$659 \mathrm{~mw}~(\mathrm{T_2})$	582 w 546 w (p)		548	580		~540 w, br (p)	
437	$454 \mathrm{s} (\mathrm{A_1})$					484 III (12)		
101		409 m (p)	$405 (A_1)$			$412 s (A_1)$	412 m (p)	300 m
		391s (p)			394 326			TH COO
369 (p)			370 (E)		000		\sim 370 w, br	
j	$357 \mathrm{sh}$ $338 \mathrm{s} \mathrm{(A_{1g})}$					$335 \mathrm{ms} (\mathrm{A_{1g}})$	353,5 vs (p)	355 s
295 (p)	p I					$293 \mathrm{mw} \mathrm{~(Eg)}$	$304\mathrm{m}$	$305\mathrm{m}$
	283 m (E _g)	$276 \mathrm{~m,~br}$			278			
	$250 (T_2)$				102			
213	$207 \text{ m} (T_{2g})$	194 mw (p)	$194 (A_1)$				193 m (p)	
	175 sh (E)					$184 \text{ m} (\text{T}_2)$ $173 \text{ w}, \text{sh} (\text{T}_{2g})$	179 m	$179 \mathrm{ms}$
		$154 \mathrm{mw}$	158 (E)		¢	152 w (E)	$156\mathrm{ms}$	101 811
83		96 m			98		$\sim 64{ m sh}$	$67 \mathrm{m}$

As(V)-Chloro-Komplexe

52*

d.) Î

 $\mathbf{p} = \mathbf{polarized.}$

801

A. F. Demiray und W. Brockner:

ten. Die spektroskopischen Untersuchungen des PCl_5 —SbCl₅-Gesamtsystems zeigen, daß andere mehrkernige Komplexspecies, wie sie beispielsweise im System PCl_5 —AlCl₃²⁰ aufgefunden wurden, z. B. Sb₂Cl₁₁⁻, nicht auftreten. Ionisch gebaute Schmelzen werden auch in einer Reihe von PCl_5 -haltigen Systemen wie PCl_5 —NbCl₅²¹, PCl_5 —TaCl₅²¹, PCl_5 —SnCl₄²², PCl_5 —TiCl₄²³ und PCl_5 —ZrCl₄²⁴ aufgefunden.

Tabelle 2. Ramanfrequenzen (cm⁻¹) der Verbindung PCl₄SbCl₆ im festen und geschmolzenen Zustand mit Intensitäts- und Polarisationsangaben und der Zuordnung. (Abkürzungen wie in Tab. 1)

$\frac{\mathrm{PCl}_4 + \mathrm{SbCl}_6}{(\mathrm{Lit.}^{18})}$	$rac{\mathrm{PCl}_4 + \mathrm{SbCl}_6}{\mathrm{s}, \mathrm{ZT}}$	$\frac{\mathrm{PCl}_4 + \mathrm{SbCl}_6}{\mathrm{l}, 500\ ^\circ\mathrm{C}}$	
$ \begin{array}{c} 459 \ (A_1) \\ 334 \ (A_{1g}) \\ 290 \ (E_1) \end{array} $	$\begin{array}{c} 652 \le (T_2) \\ 454 \le (A_1) \\ 331 \le (A_{1g}) \\ \end{array}$	$\begin{array}{c} 650 \le (T_2) \\ 450 \le (p) \ (A_1) \\ 319 \le (p) \ (A_{1g}) \\ \end{array}$	
281 (E_g) 248 (T_2) 168 (T_{2g}) 143 (E)	$\begin{array}{l} 259 \ \mathrm{m} \ (\mathrm{E}_{\mathrm{g}}) \\ 250 \ \mathrm{m} \ (\mathrm{T}_{2}) \\ 172 \ \mathrm{s}, \ \mathrm{br} \ (\mathrm{E}, \mathrm{T}_{2\mathrm{g}}) \end{array}$	247 m (T_2) 247 m (T_2) 172 sh (E) 166 s (T_{2g})	

Wie die eben genannten Beispiele zeigen, schmelzen die meisten Phosphorpentachlorid—Metallchlorid-Verbindungen unter Beibehaltung ihrer ionischen Komplexbausteine. Die As(V)-Komplexe PCl_4AsCl_6 und $AsCl_4SbCl_6$ sind Ausnahmen.

Die Bildung der ionischen Feststoffe wird letztlich durch den aus der Gitterenergie herrührenden Energiegewinn bedingt. Der Zerfall des PCl_4AsCl_6 beim Schmelzen kann zumindest formal wie folgt verstanden werden:

In einem dynamischen Gleichgewicht

$$AsCl_6^{-} \rightleftharpoons AsCl_5 + Cl^{-} \tag{1}$$

konkurrieren die Lewis-Säuren AsCl₅ und PCl₄⁺ um das Cl⁻, wobei PCl₄⁺ die stärkere Lewis-Säure ist. Das AsCl₅ ist bei diesen Bedingungen thermodynamisch instabil⁵ und zerfällt in AsCl₃ und Cl₂. Die Instabilität des AsCl₅ wird von Seppelt^{4,5} in einleuchtender Weise als Folge der Übergangsmetallkontraktion dargelegt.

Andere denkbare Gleichgewichte nach

$$\operatorname{AsCl}_{6} \Longrightarrow \operatorname{AsCl}_{4} + \operatorname{Cl}_{2}$$
 (2)

und

$$AsCl_4^- \rightleftharpoons AsCl_3 + Cl^-$$
 (3)

führen auf Grund der größeren *Lewis*-Säure-Stärke des PCl₄⁺ in Relation zum AsCl₃ zu demselben Ergebnis.

Vergleichbare Verhältnisse findet man beim Phosphorpentachlorid, in dem beim Schmelzen die stärkere Lewis-Säure PCl_4^+ das Cl^- aus dem Gleichgewicht

$$PCl_6^- \rightleftharpoons PCl_5 + Cl^-$$
 (4)

entfernt und somit eine Schmelze aus PCl₅-Molekülen³, die unter diesen Bedingungen thermisch stabil sind, gebildet wird.

Der Zerfall beim Schmelzen des AsCl₄SbCl₆ kann mit

$$AsCl_4^+ + SbCl_6^- \rightleftharpoons AsCl_5 + SbCl_5$$
(5)

formuliert werden. Das $AsCl_5$ zerfällt, wie oben diskutiert, in $AsCl_3$ und Cl_2 , wodurch das obige Gleichgewicht nach rechts verschoben wird.

Arbeiten zur Darstellung und Charakterisierung weiterer As(V)-Chlorometallate, deren Existenz beispielsweise Leitfähigkeitsmessungen von *Kolditz* und *Schmidt*²⁵ anzeigen, sind im Gange.

Dank

Herrn Prof. Dr. W. Bues möchten wir für sein stetiges förderndes Interesse danken. Der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie danken wir für finanzielle Unterstützung. Herrn D. Grünewald sei für die sorgfältige Aufnahme der Ramanspektren gedankt.

Literatur

- ¹ L. Kolditz, Advances 7, 1 (1965).
- ² H. M. Powell, D. Clark und A. F. Wells, J. Chem. Soc. 1942, 642.
- ³ P. v. Huong und B. Desbat, Bull. Soc. Chim. France 7, 2631 (1972).
- ⁴ K. Seppelt, Angew. Chem. 88, 410 (1976).
- ⁵ K. Seppelt, Z. anorg. allg. Chem. 434, 5 (1977).
- ⁶ S. M. Ohlberg, J. Amer. Chem. Soc. 81, 811 (1959).
- ⁷ H. Chihara, N. Nakamura, H. Okuma und S. Seki, Bull. Chem. Soc. Jap. 41, 1809 (1968).
- ⁸ K. Olie, C. C. Smitskamp und H. Gerding, Inorg. Nucl. Chem. Letters 4, 129 (1968).
- ⁹ W. Bues, F. Demiray und W. Brockner, Spectrochim. Acta 30 A, 1709 (1974).
- ¹⁰ R. Heimburger und M. J. F. Leroy, Spectrochim. Acta **31 A**, 635 (1975).
- ¹¹ W. Brockner, S. J. Cyvin und H. Hovdan, Inorg. Nucl. Chem. Letters 11, 171 (1975).
- ¹² W. Bues, F. Demiray und W. Brockner, Raman Newsletter 78, 6 (1975).
- ¹³ W. Bues, W. Brockner und D. Grünewald, Spectrochim. Acta 28 A, 1519 (1972).
- ¹⁴ H. A. Øye und W. Bues, Inorg. Nucl. Chem. Letters 8, 31 (1972).
- ¹⁵ P. W. Davis und R. A. Oetjen, J. Mol. Spectr. 2, 253 (1958).
- ¹⁶ H. Siebert, Anwendungen der Schwingungsspektroskopie in der anorganischen Chemie. Berlin-Heidelberg-New York: Springer. 1966.

A. F. Demiray und W. Brockner: As(V)-Chloro-Komplexe 804

- ¹⁷ F. J. Brinkmann, H. Gerding und K. Olie, Rec. Trav. Chim. 88, 1359 (1969).
- ¹⁸ P. Reich und H. Preiss, Z. Chem. 7, 115 (1967).
 ¹⁹ I. R. Beattie, T. Gilson, K. Livingston, V. Fawcett und G. A. Ozin, J. Chem. Soc. (A) **1967**, 712. ²⁰ F. W. Poulsen, 7th Euchem Conference on Molten Salts, Lysekil, Schweden,
- 1978.
- ²¹ G. Okon, Dissertation, Technische Universität Clausthal, 1976.
- ²² W. Brockner und A. F. Demiray, eingereicht an Z. Naturf.
- ²³ A. F. Demiray und W. Brockner, Spectrochim. Acta, im Druck.
- ²⁴ A. F. Demiray und W. Brockner, Mh. Chem., im Druck.
- ²⁵ L. Kolditz und W. Schmidt, Z. anorg. allg. Chem. 296, 188 (1958).